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ABSTRACT

In this work an investigation is made of uniform approximations

to the solutions of linear differential equations with variable coefficients.

The ordinary differential :quations are replaced by an appropriate set of

partial differential equations that determine the unknown function in terms

of a set of independent '"time scales.'" The time scales are determined sa

as to obtain uniformly valid approximations. The partial differential

equations, in conjunction with the requirement of uniformity of the approximation
in a given interval, determine the time scales through a set of "clock functions"
ki » which may depend on the interval of interest. It is essential for the

success of the approximation that the clock functions be nonlinear functions of
time, in addition to being complex quantities. The constant coefficient case
arises as a natural limit, Thus the present approach generalizes earlier time
scale analyses. With this generalization we recover for second order systems
the Liouville-Green (or WKBJ) approximation. The difference between the
present approach and the PLK method in emphasized with examples,

Bounds on the errors committed are established for the second and
third order equations, The use of two time scales (with nonlinear clocks)
enables us to obtain approximations to the amplitude and phase of each
of the modes of nth order equations,.

The prototypes that are of interest are the linearized equations
governing the motion of VTOL aircraft. These equations constitute a
system of rather high order in the time derivative (third or fourth order for
motion in the plane of symmetry). The approximation method obtains the
aircraft variables in terms of simply calculable functions of the stability
derivatives, The frozen analysis of the aircraft equations suggests solutions

of the simple form

z A, eAit
i 1

with Ai and )'i slowly varying in ime. We introduce new independent
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variables (time scales) T and ‘r'1i to represent the amplitude and phase

of the modes and express the aircraft motion in the form

L a(r. ) et
7 i ol

Toi and Txi being determined appropriately, The results of the approximation
are compared with numerical integrals of the aircraft equations for the

third order hovering system and the complete fourth order equations which
allow for the transition from hover to forward flight, The approximation

is found to be very accurate (to within 10% error) for the third order system.
For the fourth order system comparable accuracy is obtained except near

the transition point, However, qualitative features of the exact solution are

not lost, A uniform description of the aircraft motion is thus obtained.
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CHAPTER I

INTRODUCTION

1.1 Origin of the Problem

This dissertation concerns the analysis of systems described by
linear differential equations with variable coefficients., This is a
classical problem, one that has attracted and occupied the interest of
mathematicians and physi~ists since about the middle of the seventeenth
century, The range of interest is vast, from esoteric fields of study such
as topology and the qualitative theory of differential equations to the very
practical task of analyzing actual systems arising in modern physics and
engineering. The fields of applied mathematics and physics are replete
with examples of linear differential equations with variable coefficients
embracing such diverse disciplines as celestial, quantum and classical
mechanics, wave motion in inhomogeneous media, rocket flight through the
atmosphere, and so on.

The importance of the study of such systems has increased in recent
years mainly because of three factors--~the attempt to comprehend the more
subtle phenomena in nature, and the advent of sophisticated dynamical
systems of modern engineering, and the need to stabilize and control such
systems. In the aerospace sciences, such problems arise for example
in the analysis of the dynamics of motion of a vertical take off and landing
(VTOL) type of aircraft from hover to forward flight, The aerodynamic
parameters, since they depend on the flight condition, change continuously
during the transition and the differential equations describing the motion
have nonconstant coefficients. Another example is the motion of a space
vehicle negotiating a flight from or reentry into the earth's atmosphere,
The variation of density with altitude gives rise to variable coefficients in
the differential equations,

Another way in which such equations arise is in the theory of

partial differential equations. In problems which admit of the separation




of variables, the ordinary differential equations thus obtained will often
contain variable coefficients, A well-krnown example is that of wave motion
ia inhornogeneous media. The wave equation yields, after separating the
variables, a function periodic in time and a s»>ace dependent function which
satisfies an ordinary differential equation with variable coefficients,

A similar problem also arises in dealing with nonlinear differential
equations. The variational equations corresponding to a particular known
solution of a nonlinear differential equation often turn out to be linear
equations with variable coefficients. The variational equations may be

useful in deducing stability information.

1.2 Historical Sketch and Review of Existing Work

In attempting to solve linear time-varying equations, the analyst is
beset with considerable difficulty., The history of formal methods of
integration practically ends in the latter half of the eighteenth century.

The first order linear differential equation (l.d.e.) can be solved

exactly by means of a quadrature. The second order l.d.e. with arbitrary
coefficients, however, is quite another story. It can be shown (Ref. 1),
though not without difficulty, that it cannot be solved in general by a finite
number of quadratures and elementary operations. For particular
variations of the coefficients, however, the various standard transcendental

differential equations are obtained. For example, in the l.d.e.
y'twi(t)y' +w (t)y =0 (1.2.1) )

(The primes denote differentiation with respect to the independent variable t)

3
if wy = tl- and w, =1 -—:g' , we obtain Bessel's equation cof order n;
if w, g, Wy T ot the Airy equation; if w, = 0, w, = {a - 2qcos2t)

(a, q constant) we have the familiar Mathieu equation, and so on. These
are well known equations and exact solutions ire available,
In all but the standard cases exact solutions are nct known and the

explicit forms of the asymptotic solutions cannot easily be written down.




One has to resort to approximations under these circumstances, and the
literature on this subject is very rich indeed. Many authors have contributed
to the state of the art and the theory is quite extensive.

The idea basic to2 most of the schemrs fcr approximation is to show
that under certain conditions the given equation may be represented by
another simpler equation which can be solved, such that the difference
or the error between the two solutions is small. The most direct approach
is that of perturbation theory introduced by Poincaré (Ref, 2) and this can
be applied when there is a small parameter which exists in the physical
system. Then direct perturbation theory yields approximations of better
and better accuracy. There are many cases where such a representation
becomes unsatisfactory over part of the domain of interest. This

phenomenon is termed nonuniformity and will be examined in detail later.

More sophisticated perturbation methods have been devised so0 as to
overcome this difficulty (but sometimes only partially).

The available methods of analysis and their application to time-varying
control systems have been examined in Ref., 3. There the methods are
categorized into classical theory of differential equations, matrix methods,
methods of integral transforms, etc. App-oximations such as the method
of collocation, Schellkunoff's wave perturbation method, etc., have been
discussed in detail and examples given,

Among the many apsroximations existing in the literature, one which
has enjoyed considerable fame is the so-called Liouville-Green (or WKBJ)
approximation, sometimes named with other permutations of the letters. This

name refers to the representation of the solution of the differential equation

y" +hPw(t)y=0; w> 0 [1.2:2)
in the form

vy = AwV* exp( ihjw’/' dt) + Bw exp(-thm"" dt) (1.2.3)

where A and B are arbitrary constants, The usefulness of such an

approximation will be examined later and the conaitions of validity established.




The naming of this scheme of approximation has had a diverse histnry,
Apparently the use of such approximate solutions may be traced to Carlini (1817)
(Ref, 4) who considered a specific equation of the Bessel type, Liouville (Ref.5)
and Green (Ref,6) (1837) derived the approximation for more general equations,
although their derivations lacked rigor and were only valid in restricted regions
of the complex plane. More recently the method has been referred to by
physicists as the WKB method, after Wentzel (1926) (Ref,7), Kramers (1926)
(Ref. 8), and Brillouin (1926) (Ref.9), though the letter J is often added to
acknowledge the contribution of H, Jeffreys (1923 )(Refl0) in connecting the
approximate solutions valid on either side of a transition point--a point on either
side of whizl, u (1) has opposite signs; and H. Jeffreys (Ref.1l) has recently
pointed out that he himself had been anticipated by Gans (Ref.12), Just to
complete the overwhelming list of the different names, Bailey (Ref.13) has
chosen to call it the "L, R, approximation', after lLiouville (Ref.5)(1837) and
Rayleigh (Ref, 14) (1912). In a recent reviev&: article by B.S, Jeffreys (Ref.15),
the name asymptotic approximation method is suggested. Perhaps among all
these various names, that of ''phase -integral method' as used by Heading (Ref. 16)
seems to be most appropriate as it does not refer either to its discoverer or to
its method of derivation. Taough the name WKBJ seems to be widely prevalent,
we sha.l follow Olver (Ref.28) ard use the name "L-G approximation' after
Liouville and Green who derived the approximation first,

It must be noted in passing that it is possible to raise some criticiams |
about the point of view adopted in the above method of approximation,
However, approximations quite often serve a useful purpose in mathematical
physics and engineering and have led to illuminating results in many cases. H
When valid the above approximation scheme shows, for example, the {
connection between classical and quantum mechanics by providing approximate

solutions to Schrodinger's equation. In response to such criticisms the

author cannot do better than to fall back on Heading (Ref.17), who says, ,
"For example, with no just foundation for such remarks, Smyth has

criticized a paper making use of the method by writing:'It should be




observed that the authors have used a solution which is a very poor
approximation to the given problem as an approximate solution to another
problem, It is certainly not to be expected that the results obtained in
this manner will have any connection with the original problem.'
Introducing a new approach that leads to a difference in applicability,
Hines has observed that his new method yields an approximate evaluation
of the exact solution, rather than an exact evaluation of an approximate
solution as is found in the WKBJ method!'" Perhaps the wise remarks of
Schellkunoff (Ref, 18) concerning the approximations should be recalled:
"There is something in human nature that makes one yearn for the exact
answer to a given problem. In particular it makes little difference whether
a given problem is solved approximately or replaced by an approximating

problem which is then solved exactly,"
1.3 The Liouville-Green ( or WKBJ ) Approximation

This approximation can be derived by first converting (1.2,2)

into the Ricatti equation

dz F -
—_— = ,3.1
rral (et

by the transformation

where a small parameter A has been introduced in (1.3.1). The equation
(1.3.1) can be formally solved by expanding z as follows
t

S dt T xkx“ (1.3.2)
k=0

> |-

N
i}

)

where to is a constant. Substituting this into (1.3 .1) and equating like

powers of A, we get a set of equations




(1.3.3)

from which the series T xklk can be determined. This is, for examplv,
k=0

the method used by H. Jeffreys (Ref. 10).
It is known that this series is, in general, not convergent, but is
only asymptotic, From the above we can get the LG approximation.
w3

t
yit) = (;’-, )V expl # i tj — at (1.3, 4)

o

if we neglect the other terms. Similar derivations of this approximation
are given in many books on quantum mechanics, but few give the precise
conditions of validity.
The parameter A was introduced only as a formal mathematical tool
for obtaining the desired expansion for y. It is seen that bot'. in the l.d.e.
(1.2.2) and the LG solution (1.3.4), the parameter A and the function
w(t) appear only in the combination %’5 , and so0 one can simply write w
instead of ;-3 « The definiteness of the sign of w¥® must be ensured by
branch cuts in the complex t plane radiating outwards from the zeros
of w, and the integration must take place along paths not crossing these cuts.
The above treatment is inadequate since neither estimates of the errors
of the approximation nor the regions of validity in the complex plane are
given. The solutions of equation (1.2.2) are single-valued in a domain
containing no singularities of @ (t); but because of the fractional powers of
w(t) the L@ solutions are not single -valued and so it is clear that the
solutions (1.3 .4) are valid only in restricted regions of the complex t plane,
One of the purposes of this work is to demonstrate a more general

method of approximation which yields the L G solution as a special case




as well as approximate solutions valid where the LG solution is not.

The study of asymptotic approximations to the solutions of l.d.e.
would be incomplete without at least a brief discussion of the Stokes
phenomenon. This name is given to the discontinuous changes in the
arbitrary constants that occur in the asymptotic solutions of certain
differential equations,

It is rather interesting to follow the beginnings of the observation of

this phenomenon. In a letter to a certain young lady, Sir George Gabriel Stokes

wrote in 1857 (Ref. 19) (and the present author wishes to beg the indulgence
of the reader), "When the cat's away the mice are at play. [ have been
doing what I guess you won't let me do when we are married; sitting up
till 3 o'clock in the morning fighting hard against a mathematical difficulty.
Some years ago I attacked an integral of Airy's, and after a severe trial
reduced it to a readily calculable form. But there was one difficulty about
it which, though I tried till I almost made myself ill, I cculd not get over,
and at last | had to give it up and profess myself unable to master it.
I took it up again a few days ago, and after two or three days hard fight,
I at last mastered it."

The phenomenon was first observed in connection with the Airy

equation:

f
(=]

Y" - zy

For small lzl , the general solution comprising of two independent power
series solutions, would involve two fixed arbitrary constants. It was
observed that if for a certain range of arg z, the general solution was
represented by a certain linear combination of the two asymptotic solutions,

then in a neighboring range of arg z it was by no means necessary for the

same linear combination to represent the same general solution. Stokes(Ref.

in fact showed that the arbitrary constants must be changed discontinuously
on crossing certain lines in order to provide an asymptotic representation

of a continuous function for both ranges of arg z. These lines are called

anti-Stokes lines.

20)




The Stokes phenomenon occurs because an asymptotic series is not

unique, For example, the two functions

_1{z)
by (z) T (z)
13 -
and lbz(z)=;o((zz)) te ”

have the same asymptotic expansion for|z| =~ = when Re [ 2] >0, Besides, the
asymptotic expansion for ¥, (z) will change drastically from Re ' 2]>0 to

Re. 2 <0, The asymptotic form of Y5 (z) as arg z changes would reveal a

%, 3{-’, etc. These discontinuities are only apparent,

however, and are essentially a result of the nonuniqueness of asymptotic

discontinuity at arg z =

expansions (Ref, 21i).
One may also consider that the Stokes phenomenon occurs because the
operations of analytic continuation and taking the asymptotic expansion do not
commute, 'n other words, let f(t) have the asymptotic expansion:
f(t) = fo(t) il gl fa () ko

Let fi(t) be now analytically continued into fi(z). On the other hand, let the function

f(t) be analytically continued into f(z). If we now obtain the asymptotic expansion
(@) = %2) + ct® @) +...

we will find that in general:
f.(z) # f(i)(z)

This is the Stokes phenomenon,

The Stokes phenomenon in LG theory arises as follows (Re‘, 22),

The approximations to the solutions of

y" +witly =0 (1.3.5)
are given by .
y, iy, 8)=8u ) con( | W artvy) (1.3.6)
a
when u is positive and ¢
y_(t;a.B)=(-w(t) )" a exp(] (-w)tdt) (1.3.7)
a

( 3
+Bexp(- [ (-w)¥at)
a

when u (t) is negative, a,B,y,8 are arbitrary constants,

8




When w > 0 (1.3.6) represents one solution of (1.3, 5) with specific
constants; and when w < 0 (1.3.7) also needs specific constants, If w(t)
changes sign in the interval of interest, then the requirement that (1.3, 6) and
(1.3.7) must represent the same solution in the entire interval thus correlates
the forms (1.3.6) and (1.3, 7) and the correlation is determined by the
association of the respective constants. As w(t) changes sign it is seen that both
the forms (1.3.6) and (1.3.7) break down for two reasons:

(i) both become infinite when w (t) vanishes

(ii) the equativn for which (1.3.6) or (1.3. 7) are exact solutions has

singularities at the zeros of u (t) and the functions (1.3, 6) and (1.3.7)
are multivaluea in general in the vicinity of these asingularities,
i,e. transition points, These points are also called 'turning points, "
The representation of single-valued functions by multiple-valued functions can
be expected to be valid only in a restricted region,
In fact, as Langer says (Ref.22), merely because the pair of solutions
yit)~y (tiy.,¢)
(1.3. 8
y(t) ~ y_(t;a,B)

valid respectively on either side of a transition point exist, it is a non sequitur

that the r,h., members of (1,3.8) represent one and the same solution of (1.3.5).
The contrary is the case, For every specified ¥,5 there correspond specific
a,B. Inorder to deduce one form of asymptotic representation from the other,
one depends on the so-called '"Connection Formulae,' These can be derived in
two ways., One is by representing the solution near the transition point by the
Airy function and connecting this to the asymptotic solutions on either side,

The other is by a study of the Stokes phenomenon and thus connecting the
asymptotic solutions on either side of a transition point. This will he diecussed

in a later section.
1.4 Objectives of the Investigation

From what has been said hitherto, it is evident that for the general

l.d.e. of order greater than two, the best general result that can be




obtained is to get a good approximation with a knowledge of the errors
committed in the use of such an approximation. Unless the coefficients have
certain special forms, it is, in general, impossible to solve the equations
exactly in terms of elementary functions and operations. Once this is
realized, the aim is to get approximations and error estimates. Mathematicians,
however, have been for the most part interested in areas which afford
general conclusions regarding the mathematical properties. There is an
extensive mathematical literature on the many aspects of linear differential
equations and one may refer to the works of Hartman (Ref, 23), Feschenko
et al (Ref, 24) etc. which contain extensive bibliographies: The engineer
and the physicist, on the other hand, have been interested in approximations,
insofar as they describe the physical system adequately, in order t» glean
some quantitative insight about the system.

The LG approximation seems to fill this gap satisfactorily for a
number of applications. Physicists have used the method to grcat advantage
particularly in the fields of quantum mechanics and radio wave propagation
in the ionosphere (Ref. 25), However, the control systems engineers have
generally stayed clear of this rather powerful method, except for some
researchers such as Pipes (Ref. 26), who applied it to analyze time-varying
networks., More recently Curtiss (Ref 27) has applied these ideas to the
analysis of VTOL transition dynamics where he has developed a modified
root -locus method to determine the "unsteady' roots, as deviations from
the ''quasi-steady' or the variable '""charac.eristic' roots of the system.
Using this technique one is able to draw sketches fairly quickly at a
number of points and obtain information about the instantaneous ''damping"
and ''frequency' of the modes of motion. These applications have broken
the ice in regard to engineering dynamics analysis of variable systems and
pointed the way to a more complete treatment of the problem, However,
with reference to the VTOL transition dynamics, it is desirable to have a
uniformly valid approximation throughout the transition from hover to

forward flight. This naturally leads to the study of transition points or

10
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turning points. Error bounds, of course, make the theory more complete.
In contrast to the LG approximation for the l.d.e. of second order, for
which there is a substantial body of work covering these areas, no such
complete theory exists for the third or higher order l.d.e. Since dynamic
systems of the vehicular type are generally of higher order than the second,
it is felt that the present work might fill in part this need.

In this thesis a scheme for approximations for 1.d, e. with variable
coefficients is developed. Explicit formulae for the approximate solutions
are derived and this is done by appropriate extension of the independent
variable, employing multiple time scales and proper 'clock' functions(which are
complex and nonlinear) The "frequency' and "amplitude"” variation of the
solution are extracted separately and are then combined to form a
composite solution. The advantage is that one is able to retain, to some
extent, the familiar ideas of stationary linear systems analysis,

Further, absolute error bounds are derived. It is clear that these
are more useful than the usual O symbols of asymptotic analysis, which are
necessarily somewhat vague. The question of transition points is then
examined and a technique is proposed to circumvent the accompanying

difficulties.

1.5 Arrangement of the Dissertation

The results presented in the dissertation are presented in the following
manner., Chapter II presents the theory of the method of extension
and multiple time scales which will form the basis of the results obtained in
the dissertation. The method is applied to simple examples, and
asymptotological principles are presented.

Chapter III contains the principal ideas of the thesis. Here the explicit
formulae for the approximate solutions of 1.d.e. with variable coefficients
are derived using the method ofextension. It is seen that for the second order
l.d.e. the Liouville-Green (or WKBJ) solution is one of the approximations
derived. The formulae for third and fourth order l.d.e. are derived and then

. . o th ;
the theory is generalized to then order equation,
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In Chapter IV absolute bounds on the errors of the approximations are
derived, For the second order equation.the error bounds for the WKBJ
approximation are derived in a new and direct way different from that
of Olver(Ref.28)and asymptoticity of the approximations is demonstrated.

Chapter V contains the application of the above approximation to
some analytical examples and the analysis of the dynamics of VTOL
aircraft during transition from hover to forward flight. First the hover
or two degree-of-freedom case is studied, and then the full three
degree -of-freedom system ic studied.

A brief sketch of the failure of the L.G approximation near transition
points is discussed in Chapter VI. An outline of some open problems is
presented, together with a method of shifting the transition point out of
the physical domain of interest,

In this work the word ''canonical' is used to denote an equation of

the nth order in which the term containing the (n-l)th derivative does not

appear.
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CHAPTER 1I

ASYMPTOTIC REPRESENTATION AND UNIFORM VALIDITY

2,1 Nonuniformity in Approximations

In this chapter, the failure of the conventional perturbation approach
in certain regions of interest and some well-known methods of dealing with
it are presented briefly. The purpose is to .provide a basis for the present
work within the general framework of the theocry of such approximations,
Formal proofs are not presented.

We shall begin by iliustrating what we mean by a uniformly valid
approximation. Given a function f(t) of quite an arbitrary shape (Fig. 1),
fo(t) is said to be a uniformly valid approximation of f(t) to order ¢

(where ¢ is a ''small" parameter, i.e., € << 1) if and only if for all t:
P

f=fo+ O(e); (or f=fo+o(l) ) (2.1.1)

That is, the error between the function and its approximation is uniformly
small within the domain of interest. A further discussion is given in
Appendix V.

Contributions to the theory of uniformization of asymptotic expansions
have come from many sources and it is difficult to do justice to all of them,
The work of some authors, however, has been highlighted for purposes of
orientation. In problems exhibiting the presence of a small parameter €,
approximations based on a direct perturbation expansion in powers of ¢
were first introduced by Poincaré (Ref. 2) in his researches on celestial
mechanics. Often such a scheme leads to a serious misrepresentation
of the true function and this phenomenon is called nonuniformity in the
expansion., For example, direct expansion about hover, of the solution to
the transition equations of motion of a VTOL aircraft fails to yield the
correct long time behavior. Also the expansion of the solution of the

Liouville equation of statistical mechanics, in powers of the strength of the
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two -body interaction, breaks down for times of the order of the relaxation
time to equilibrium; and so fails to give the crucial information on how a
gas approaches equilibrium (Ref. 29).

The precise nature of the nonuniformity enables one to classify in the
fashion of Sandri (Ref. 30) as follows,
(1)Singular type

Nonuniformity occurs for finite values of the independent variable,
(2) Matching type

Nonuniformity is manifest in that it is not possible to satisfy the
initial or boundary conditions. This is usually because the inherent
simplification of perturbation theory results in lowering the order of the
original equation.
(3) Secular type

Nonuniformity occurs for large values of the independent variable,

The classification is only pragmatic and it must be noted that
sometimes one type of problem can be transformed into the other.

The manner in which the nonuniformities arise is illustrated as

follows with simple examples without plunging into lengthy calculations.
1. Singular Perturbation

Since only linear system~ are of concern here, the linear analog of
Lighthill's well-known example (Ref. 31, 32) (Linear Lighthill Model)
suffices to illustrate the essential features of the phenomenon.

Consider the equation
df
—_—t =) A 2. .Z
(t + c)dt f 0 (2.1.2)

with the condition- f(1) -1 (2.1.3)

Direct perturbation theory yields:

f=1f +¢ef +.
o
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Pl g (2.1.4)

dt o
df. df
=) = - =D
tage th dt
Solving (2.1.4) we have:
co Co c
= —— = - —L ° zo .
fo : » fl Er + £ , etc (2.1.5)
Imposing the condition (2.1.3) :
1 L 1
== = —— - - tc. 2.1.
fo t'fl n ta,ec (2.1.6)
Thus the approximation
1 1 1
N o o e Z. .
fmt«w:(t t—:)+ (2.1.7)

breaks down severely as t approaches zero.
Further it is observed from (2.1.5) that it is impossible to impose
any arbitrary conditions at t = 0; Fig. 2 illustrates this. The exact

solution is given by

where ¢ 1is a constant,
2, Matching Type

Consider the constant coefficient equation

d? f df
. —— = 0 L L]
S I n + bf (2.1.8)
wiith:
floo=0, £(0)=c (2.1.9)
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Perturbation theory yields
af '+bf =0
o o
"4af, +bf, =0
having the solutions

f =k exp(-(b/alt), (a)
o o

(2.1.10)

fi =k exp(~(b/a)t) -k texp(-(b/a)t) (b)

where ko. % are arbitrary constants. Clearly conditions (2.1.9)

cannot be met. Furthermore, the '"correction'” «f; eventually becomes
larger than the lowest order term fo and therefore the expansion is not
uniform for large t.

Equation (2.1, 8) can, however, be solved exactly as

m t

f(t):coe SR c et (2.1.11)

where mo, m; are the roots of:

e s
€ €
mo=-iop(ip A2
€
4b %
m, =-—-b(<‘§)’ -2

¢ & can be chosen suitably; the solution is depicted in Fig. 3.
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3. Secular type

Given the equation

— +ecf=0 (2.1.12)
with f(0) = 1, a direct perturbation expansion yields:
f=1.£1=-t,f3=-2-.... (2.1.13)
The approximation f = fo + ¢ f; fails for t ~-} ; the exact solution

f =exp ( -ct)

reveals the slow decay (Fig. 4).

Some techniques have been developed in order to render the approximate
solutions uniformly valid. These methods of uniformization can be broadly
classified as follows.,

(1) The Poincare-Lighthill-Kuo or PLK Method

(2) Method of Matched Asymptotic Expansions (Inner and Outer Expansions)

(3) Method of Extension and Multiple Time Scales

The PLK Method (Ref., 32) is typically applied to singular perturbation
problems. The method consists of suitably stretching the independent
variable and moving the singularity out of the physical domain of interest.

This is done in equation (2.1.2), for example, by expanding the independent

variable t also in a series:
t=s+ety (s)+e(s)+ ... (2.1.2 a)

The functions t; (s}, tz (s), etc. are to be chosen so as to eliminate the
nonuniform terms, This technique yields the exact solution for the above
example. It is worth noting that even though in principle the PLK method
and the time scales approach are similar, they in fact differ considerably

in the mechanical detaile of the analysis. In Appendix IV we emphasize
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this point with a simple example. One can, however, obtain connection between
the stretching and clock functions, as was done, for example, by Sandri (Ref. 30),
Conceptually, ‘while the multiple time scales approach obtains the description
of a phenomenon by following the gross features on one scale and fine ones on
another, the main purpose of the PLK method is to move the singularities
outside the domain of interest.

The method of "inner" and "outer'' expansions consists in developing
separate expansions (Ref, 33), each valid within a region, and matching
them at the boundaries of these regions. This method has been typically
applied to problems of the boundary layer type. The boundary layer
approach and that of multiple scales have as a common feature the existence
of separate scales, on each of which the unknown function exhibits different
behaviors. However, in the former, the 'inner' and '"outer" solutions
have to be matched at the common boundary or in a region of overlap.
This usually calls for criteria based on intuition and seems to involve a
certain amount of art in the process. The method of multiple scaies, on the
other hand, while it recovers the different behaviors, doea not involve any
m#tching, but consists in an extension of the independent variable into a
space of more than one dimension. Further, it is a formal method and
may lead to a systematic method of studying problems of the boundary layer
type also,

In regard to (2.1, 8) it can be shown that the fast variation of the
solution for small values of t can be obtained in lowest order, by a

suitable extension of the variables, given by:

=> [N B ] [ ) -
t PO S £ rn} (2.1.14)

f = f + efl + oo
o
Ti (t) are defined by:

n
t

"
™

t
Tl =Zr T =t. 11 =€tp es e Tn




r——————

The lowest order equation describes the "inner' solution, To obtain the
behavior for values of t of order unity or greater, we do not have to
consider an additional, '"outer', expansion of the original equation.

The term of the next order in the expansion already made obtains the "outer"

solution. The time derivatives are now extended as:

d 1 3 ) 3
_— D - —— + -_— + =’ +ooo
dt € 3Ta 3T T
(2.1.15)
da l a2 1 aa aa aa
— — N + - ! + + eeo e
dt? e 3T € (2 3T a'ro) ( 3T 3T, 3T,
In lowest order we have
d°%f 3f
—; + 8 == = 0 2,1,
31’_13 3T (2.1.16)
with the solution:
£(T 4,7 )=-E°-('r T Jexp(=-aT, ) +k(r, T ) (2.1.17)
=1t .ol" = 0' 10 e o P -1 O' 1 000 ela
The equation in the next order is:
A YT A 2.1.18
3T 3T 3T, B (Elat8)

Substituting from (2.1.17) above:

2 ko exp ( ~aT_ ) - koexp (-aT ;) +aly

+b [ =52 exp(-ary)tiq] = 0
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Regrouping terms:
. b .
(k- :ko) exp(- aTy ) + (aky +bk )=0 (2.1.19)

We now equate the terms in each parenthesis to zero, which gives:

b
k =Ly (Ty,...)exp(+=7 ) (a)
(2.1.20)
b
ky =L2('r1,...)exp(-z-ro) (b)

Upon restricting along T, =‘_£ 0 1'°= t we have;
f = ¢ exp(-%z)exp(+;b—t)+c2 exp(-%t) (2.1.21)

This process can go on to obtain higher approximations. It can be seen that
(2.1.21) describes the correct behavior of the exact solution (2.1.11) to
leading order.

For purposes of the present study, the method of extension and multiple scales
is more pertinent; the primary interest here will be as it applies to multiple time
scales, though in its general concept (Ref. 29) the method includes the other schemes
also. A further discussion is given in the next section. An example of singular
perturbation will, however, be considered and it will be solved by the time scales
treatment,

The main aim is to show that the failure of the direct perturbation expansion

has as its raison d'étre an inappropriate scale on which the unknown function is

observed. The natural scales or ''clocks' which afford a uniform description of the
phenomenon are determined by knowing the precise nature of the breakdown of

the direct expansion,
2,2 The Concept of Extension

The method of extension was recently introduced as a mathematical technique
designcd to exploit as much as possible the presence of a small parameter if one is
available in a problem. The aim is to render approximations of the perturbation
type uniformly valid. The origin of the concept can be traced to the works of Bogoliubov,

Krylov, and Mitropolsky, who allowed all the constants of the lowest order perturbation
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theory to be slowly varying functions. The original ideas of Bogoliubov and
Krylov (Ref.34) were extended and modified in the recent work (translated into
English) of Bogoliubov and Mitropolky(Ref. 35), which provides a broad
theoretical framework for the method of averaging. The method of time scales
in its early form was applied to certain nonlinear differential equations by
Cole and Kevorkian (Ref.36); Frieman (Ref. 37) and Sandri (Ref.29) used it in
the theory of irreversibls nrocesses. Sandri (Ref. 38) has also discussed a
general technique of un!! rinization of asymptotic expansions and has shown
some of the well-known uniivurmization procedures to emerge as special cases
of such a general technique, by introducing a complete reparametrization of
the lowest order term of the perturbation expansion, The development of the
theory given in Ref. 38 is rather abstract and relies on the composition of
mappings. Precise conditions of validity of any special form of the method are
not established and it is here that the present work seeks to fill a gap.

The fundamental idea is to extend the domain of the independent variable
using suitable '"clocks' determined by knowing the precise nature of the
nonuniformities arising in direct perturbation theory. It should be noted that
the variables in general are not restricted to be real. The "clocks' are so
chosen that the new terms that arise due to extension, called '"counterterms',
eliminate the nonuniformities of direct perturbation theory so that in the
extended domain uniform approximations to the unknown function can be obtained,

The concept becomes more transparent by a re-examination of (2.1,12),
The solution f is represented as

eata €3t3

2t 31

f=l_€t + (2.2.1)

which is a convergent series and can be surmmed to the exact solution
f = exp(-ct). In general the perturbation series is not summable and one has to

th . .
resort to the k' order approximation:

k k
.2tQ k ¢t
fas 1 -¢ct+ —‘2! R S S (2.2.2)

Clearly this fails for t ~ l— , 8ince all terms will attain the same order of
magnitude, The fact is that in representing a function by a series, we want the
leading term to give maximum information and hence we look for an asymptotic
expansion rather than a convergent one. These have the property that successive

terms decrease in magnitude up to a point, beyond which they may start
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growing. The series is terminated at this point and provides a useful means of
computing the function (Ref. 39, 40). With this in mind we see that the first few
terms of the series (2.2.2) do not represent the true solution adequately for
long times,

A clearer physical picture comes into view when we consider the function

£(t) = exp( - —) (2.2.3)
2

from a different standpoint. t, is a fixed constant with dimensions of time, and
f represents a physically observable quantity such as displacement from a
reference position, or temperature difference between two insulated bodies.

An observer who measures f and records it using a clock whose unit of time is
t, will have to wait a long time (the longer for smaller ¢ ) before he can
observe a perceptible change in f. Instead, if our observer were to use the
slow variable T, =¢t, or a "super" clock which measures t in giant units of —:_*—,
the phenomenon is seen much better, for then (2.2,.3) is .

£(t) = exp (- )
¥

which is indeed the exact representation of f. Thus the method of extension
enables us to perform readings on appropriate scales by employing a sufficient
number of independent observers.

Consider a three-dimensional space (Fig.5) with orthogonal axes
‘ro. T, ,» and f. Readings on 'fast' and '"slow' clocks are represented
respectively by points along 1’0 and T, coordinates and f is defined to be
the function

£(r, . 74)=cexp(-r;) (2.2.4)

where c is a constant. Graphically, f_(‘ro » Ty ) is represented by a cylindrical
surface in Fig. 5 which is constant in ‘ro » but decays expuncntially in T, .

To relate f (‘I’o » T, ) to f(t) , let ‘l’=:—* .

From (2.2.3):

f{r] = expl -er]

Choosing c=1, (2.2.4) gives




= L
(T, €T)= exp(-er) (2.2.5)
i.e., ffrnen=1[1]

and f (1‘0, T, ) is said to be an extension of f(t).

Based on these considerations, Sandri (Ref., 29) defines extension
formally in the following manner.

Definition. Given a function f(t)where t is in general an n dimensional
vector, and a function f(T,, T, . . . 1’Nj of the N independent variables
To Bw o« & ‘rN (each of which is an n dimensional vector), f is said to

be an extension of f if and only if there exists a set of N x n equations

T =7 (t), n=12, ... N
n n

which when inserted into { give:

£ R mt) .. .7 (t))=1f(t]

The space of N-tuplets T={1, % ... ™~ } is called the
extension of the domain {7} and the equations Tn = fn(t) are called
the ' trajectories" in the extended domain. In dealing with differential
equations, the derivatives and indeed the 'ntire differential expression
itself can be treated as a function and can be suitably extended. Thus,
given

f
¢5::—t+ ¢cf=20

one extension of ® can be written as

2‘% +c-g-%-+ ¢f =0
1
o

where Qo @; e f ; t"’—'-""lfo,flj
with: T =t, Ty =€t
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In general T =T (e,t).
n n

It is evident that there are infinitely many extensions which correspond
to a given function, Two degrees of freedom are available: choice of the
trajectories and choice of the extension itself. This freedom is utilized
in obtaining an { with simpler and smoother dependence on the parameter
than that offered by f, and requiring the approximate solutions to be
uniformly valid in the domain of interest, Figures 6, 7, and 8 illustrate

the concept of extension,
2.3 Application to Simple Examples
(a) Equations with Constant Coefficients

The theory discussed in the last section will now be applied to
simple examples, First l.d.e. with constant coefficients are discussed,
beginning with the first order equation; and the method is then shown to work
for two special types of equations with variable coefficients., The aim is to
extract the leading behavior of the solutions and this is done by an extension
of the domain of the independent variable alone. Throughout the rest of
this work primes denote differentiation with respect to (w.r,.t) the indcpendent
variable.

(1) Slow Exponential Decay. Consider the first order l,d.e. (2.1,12)

which is:
%tl+€y=0;y(0)=l;0<e<<l (2.1.12)

The variable y and t are extended as follows

Yy == Y

t ‘=>. {TO, TI |T3 « s e Tn]

with 1'0=t. T, =et, 19573...57n5 0. Then:
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d A y dr, 3 dTe A dr 3 > 2 3
e SRR R e T G I — 4 3Rl
dt a‘ro ¥ 3T, dt 3Ty dt ¥ a‘rn dt L s ATy ( )

On applying (2.3.1) to (2.1.12) and equating like powers of ¢, we have:

X oo (2.3.2)
37

[0}
oy y -0 2.3.3
ar, L ( )

From {2.3.2) and (2.3.3)
Y (1'0. Ty) =A(Ty) = exp(-Ty)
which is the exact solution of (2.1.12) when y is restricted along 1’o=t;

T,.=€t. Fig. 9a shows a schematic of the root configuration.

(2) Second Order Equation. Consider the equation (Fig. 9 b)

y" +(a+¢)y'+eay=0 (2.3.4)

where a is a constant of order unity. Direct perturbation theory results

in secular nonuniformity as follows

y=yo+Wx+.o.

I|+ l:
Y, tay, 0

[}
yi' + ayy = -y +ay)

etc., giving c

= -2 exp( -at) + ¢
A P 1

C2
yis -t - = exp(-at) + c3, etc.
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where co. €y, €3, €3 are constants,

On the other hand, extension yields:
y(t) === yir_, Ty)

t === 1.7, bir =t, Ty =ct

3

LTINS Y (@)
(o] 3 0
3

2 8°Y .. 23Y L3y - 2.3.5
arary o oam Tary v =0 B

—-J'-,Az + 2L -9 (c)

Integration gives:

y(‘l’o. Ty) = -A (lal—)- exp( -a‘ro) + B(T, ) (2.3.6)

Substituting in (2.3.5 b):
A' exp( -a‘ro) +a(B'+B)=0

Since T and 7, are independent, A'=0 and B' + B=0. This gives

A = pure constant (2.3.7)

B = Cexp(-T, )

From (2.3.6) and (2.3.7) restricting y(‘ro. T, ) along the trajectories

TC t, T, =e¢t, we have the general solution of equation (2.3.4) as
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y(t) = <, exp(- at) + c; exp(- et) (2.3.8)

co, c, are constants, which is the exact solution,

Similarly in the second order oscillatory case of (i) low frequency,
large damping; and (ii) high frequency, low damping, the choice of
simple time scales separates the damped from the oscillatory motions.
One can then extract these separately and combine them to give the exact
answer.

(3) Third and Fourth Order Equations. Using the same approach as

above, third and fourth order 1.d.e. with constant coefficients can be solved
exactly by a judicious choice of time scales, For example, the following two
cases of the third order equation can be considered.
(i) oscillatory mode with low frequency and low damping;
heavily damped non-oscillatory mode (Fig. 9 cli))
(ii) oscillatory mode with high frequency and large damping;
lightly damped non-oscillatory mode (Fig. 9 c(ii) )

As an example of (i) consider the l.d.e.

y'" + (a +2¢)y" +2¢la te)y' + Zacay =0 (2.3.9)

where a, ¢ are constants; a~l, 0 < ¢ <<l].
Direct perturbation theory fails because of the appearance of secular
terms as shown below,

"t " -
yo + ayo 0
"e 4 = -2 "oy '
Y1 ay, ( Y, *ay, )
c
O mm] [o]
giving yo(t) =7 exp( - at) + c;t + c3
Y1 LI ay; = - 2ac1

Integration leads to secular terms,
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The choice of simple time scales as in (2.3.,1) yields, in a

s*raightforward manner

Y = ‘:#-1-)— exp(-a‘ro) + B(Ty) 1'0 +7(T) (2.3.10)

A' exp(-a‘ro) +2a(B'+B)=0

giving A = pure constant
B

C =Dy exp{(-1+i)7Ty) + D3 exp((-1-i)T7T,)

D, exp(-T,)

Upon restriction along 1’°=t, Ty = et, we can write
y(t) = C; exp(-at) + C; exp( (-1+i) ¢t) + Cexp( (-1-i) ¢t)

which is the exact general solution of (2. 3. 9).

The procedure is the same for fourth and higher order systems,
When the motion has well-separated modes a proper choice of time scales
yields the correc: answer in a straightforward way. A typical fourth order
example is that of the airplane longitudinal equations of motion which
exhibit two oscillatory modes, one of high frequency, heavy damping, and
the other of low frequency, low damping, being recognized respectively as
the short period and phugoid modes.

Independent work in this connection has been recently reported by
H. Ashley (Ref. 52). He considers the constant coefficient l.d. e,
describing the aircraft motion, and obtains approximate solutions, order
by order. He also achieves a rough separation of the performance and
dynamic response problems. For both these questions, he employs linear
time scales, in the fashion of Kevorkian (Ref. 36). Our approach differs
from Ashley's in that we are able to recover exact solutions of linear
equations with constant coefficients. This is done by choosing a proper

pever of the small parameter ¢ as the #xpansion parameter. Further remarks
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on the comparison of Ashley's work and ours are made in Chapter V,
Section 5.3,
The method is illustrated by the following example of the fourth

order system:

y"" 4+ 2(ate)y" + (b + 4ae + 2¢°)y" + 2¢(b + 2ae)y' + 2bePy = 0 (2.3.11)

where a,b are constants of order unity and 0 < ¢ << 1, Direct perturbation

theory obtains

yonn + Zayo'” + byo” =0 (2.3.12)
1"+ 2ay1 " +byy " = <2(y " + 2ay "' + by!) (2.3.13

etc. Integrating
y (1) = %:; expl( my t) + -2y explmat) = Cat + Ca (2.3.14)

where Co' Ci, C3, C3 are constants and my, myz are the roots of

m?’ +2am+b = 0 (2.3.15)

Substituting in (2,3.13):

ya'"'" + 2ay; " 4 by]' = constant

Integration clearly leads to secular terms,

Extencing t as in (2.3.1) yields:

Y(To.Tx) = A(n) emx To + B(Ty) emaTo + C(1y) ‘ro + D(7,) (2.3.16)

3
z—L,— SRy 0 +za—>'—,— 0 (2.3.17)
0

37 73T af I 3T 3T,

_g_, Y ° Ry
6 +.b
37 Tam 3T_aT; ar ar 3,y T8 3T 3"
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Y ay A
+ZC + 2b =< + 4a ‘_X + Zb" =0 2.3.18
o) A 371 8T ( )

(o] (o]

Substituting (2.3.16) in (2,3.17) and observing the linear independence of
the exponentials, A and B are deduced to be pure constants and

C = E exp(-T, ). Substituting this in (2. 3.18) and simplifying,
E=0and D=pye? ! +pye™ 3 (2.3.20)

where n, , n, are the roots of n* + 2n + 2 = 0. The solution therefore is:

3

Y(To.1’1 ) = ¢y e™ To 4 Ca e %o, Cqy e 4 c‘en{Lx (2.3.21)
where m, , my and n, , ny satisfy

m?® +2am+b =0 (a)
(2.3.22)
and

n® +2n+2=0 (b)

respectively (Fig. 9 d), The restriction‘fo= t,T, =¢t obtains the exact solution.

A similar approach can be used for higher order equations also. The
important point to note is the existence of separate time scales as evidenced by
the presence of a small parameter ¢ . The precise power of ¢ that appears
in a time scale can be obtained by applying Kruskal's principle of maximal
balance discussed in the last section of this chapter. Though l.d.e. with
constant coefficients are not difficult to solve, the examples above were
presented mainly for purposes of preserving some order in the development
of the method, rather than for pedantry. Furthermore, in high order systems
the extraction of the different behaviors individually is useful in providing a
different point of view and may obviate to some extent the labor of factoring

high order characteristic polynomials.
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(b) Equations with Variable Coefficients

(1) Singular Perturbation. The inethod will now be applied to a

problem of the singular perturbation type. The linear Lighthill model is

reconsidered in light of the theory of multiple time scales. The governing

equation is:

(t+€)£ +{=0; f(l) =1 (2.1.2)
dt
We have already seen that direct perturbation is singularly nonuniform.
The independent variable is extended as

t => ith =c+t or =1
[1'0,1-1} wi 1'0 c ‘r'o

71 = Ck(t)

where ¢ is a constant and k(t) is as yet an undetermined clock function.

Case (i) c =0(1)

The extended equations are,to order ¢:

d

f
(-ro -c) 'Z + 10-0 (2.3.23)
51, df . 3 f
T -C +f, =20 + k(T -c) =2 2,3,24
(O ) B—T; 1 a‘ro ( o ) 871 ( )
Integrating (2.3,23) :
¢ = AlTy)
o T -cC

. . . . . f
If fo + ¢f, is to be an approximation to f uniformly then the ratio ;1 must

be uniformly bounded. On integrating (2.3,24) this ratio can be writfen as:

f A 1 B
_Lz — - — f—
£ J(A k (To-c)a)dfo+ reSiial (&-84.25)

The counterterm k must be chosen 8o as to cancel the nonuniformity arising

in direct perturbation theory. Setting the integrand to zero is sufficient to
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ensure the boundedness of %‘ uniformly in T This proves to be convenient
as it enables us to determing ATy ) and k('ro). However, it must be noted
that this is only a particular choice and the freedom in the choice of the clock
function can be exploited in other ways also, We require uniformity of the
extended function along the trajectories 'ro(t) and Ty (¢ ,t). DBut one may
for example demand uniformity in the ‘ro, 7T, plane. In this case A(T, )
should not vanish at 7, = 0. The behavior of B(T, ) must be determined by
going to the next order,

Further, we may note that ifo_nlxthe independent variable in (2.1.2)
had been extended, the above condition would, of necessity, have to be
satisfied,

Thus we can write

AT, ) . '
kL (2.3.26)

(r =)
i. e,
il (r )=—l— = ¢, = constant (2.3.27)
A 3 k(T ~c) 1 *r
o
Hence: A =D exp(c, 7y )
ke & 1
< (1‘0- c )
After restricting ‘ro =t+c, T, = ek(t) we can write:
D .
f (1, T)| = = eelt (2.3.28) ‘
-0 o t
t
1
This is an improvement on direct perturbation theory in that f_o(t) a

is finite at the origin; however, it is not very useful as f_o(t) is forced to

go to zero at t=0,

We shall, therefore, consider the next case,

Case (ii) caO(c); c=¢a, a =0O(l1)
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The extended efuations now are;

r —L + f =0 (2.3.29)
O oT o
(o]
3 f Af e df
2.3 = - - —_—f k — 2.3.30
o 5T +6 == (1-a) TR ( )

As before:
f (7, T, ) = _AﬂL)
o o0

T
o

The uniformity ratio is given by:

{ A' a-1 B
L alE 2
3 J( k ﬁ’o ydr 4 L (Ty) (2.3.31)

The second term in the integrand gives rise to singular nonuniformity in
straight perturbation theory. In order to eliminate this we may put a=1
and k=0, Exact solvtion is now obtained and is given by:

D

{f (t)=— ; D = constant (2.3.32)
[o} t+¢

On the other hand, we may equate the integrand in (2.3,31) to zero and solve for k.

Then,
l-a) A(T H
Ll AN ) - kA
)
! -
and %—(T, ) = %—o;—) (‘ro) = ¢, = constant (2.3.33)
giving A =D exp(c, 7, )
sl
C, TO

After restriction along ‘ro= t+c, T, = ck(t):

D e(a-1), D e (a-1)
t’o(‘ro.‘rz)t —(H—C) exp( T e ) = (t+ca) exp(—t = ) (2.3.34)

33




On substituting (2. 3.34) into (2.1.2) the value of a is fixed to be equal to 1
and the exact solution (2.3,32) is obtained (Fig. 2).

It seems desirable to develop a criterion of uniformity in terms of
conditions on the time scales that would enable one to proceed systematically.
One may therefore consider the following criterion:

Clock Uniformity Criterion (CUC). The time scales ‘ro(t)

and T, (t) must be chosen such that

Tt :
kT e ) °

i.e., the slope of the T, (To) curve must be C(¢ ) uniformiy in t
when the parameter ¢ is used to separate the time scales.
In the light of this criterion, we may note that the clock uniformity

ratio (CUR) fo- case (i) of this example is given by

Ty ()| _ €
T'(t) cy t3
o

and therefore the CUC cannot be satisfied for all t. However, for case (ii)

t the CUR is given by

T, (t)| _ efa-})
T(')(t) T (t+ea)?

If we now demand that CUC be satisfied for all t we must have a = 1.
This leads to the exact solution (2. 3.32) without having to substitute

(2.3.34) back into (2.1.2).

It has thus been demonstrated that a singular perturbation problem

can sometimes be solved by a proper choice of time scales,.
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(2) Simple Dynamic Model. The following example is given here

because it is the forerunner of a phenomenon of deep significance in the
approximation of solutions of higher order equations. For instance, in

second order l.d. e, the change of sign of the coefficient is associated with

the failure of the approximation and the related analysis of the Stokes
phenomenon. The present example exhibits the oreakdown of the 'frozen'

and the perturbation approximations. The example may be considered

as the simplest model of a flight vehicle of the VTOL type, being characterized
by initial apparent instability; the system is stable, however, for long

times, Again the equation is solved by the method of extension.

Consider the equation:

df 1 -et

— .: zon
dt ‘1+¢t)x 0 (2.3.35)

fl0)=1; 0< ¢ << 1

Fig. 10 illustrates the variation of the characteristic root and the solution.
The simple ''frozen' approximation is a growing exponential and does not
match the true solution anywhere except neart = 0 and gives incorrect
statility information. Another approximation, which is a slightly more
reiined scheme of 'freezing' the system,is to treat the coefficient
essentially as a constant 1s far as the solution is concerr .d, but to vary
on a slower «ttirne scale, and can be viewed as a simple application of

the time scales method. The approximation

l“t }

(t) =exp{( T }t

thus obtained gives the correct initial behavior and stability information, but is
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quite wrong in representing the true solution in other respects, For example,

the correct asymptotic behavior for large t is not described; besides, the

maximum value which occurs at t ~ 0.4/ ¢ for the approximation (t),

is

given as exp(0.17/¢ ) whereas the true maximum is exp(0.4/ ¢ ) and occurer

at t =1/¢ ; further, f /T ~ exp( 0.2/¢). Direct perturbation
max ' max

expansion on the other hand is secular and yields
t
ft)=e (1 -t +...)
) 1

and fails for t~ By

We shall now see that a proper choice of time scales results in a
uniformly valid solution.

The variables are extended as follows:

t => ‘ro.n}

with T =1; To =t + constant

Now:

(2.3.36)

(2.3.37)

1
This suggests that the constant in 1'0 in (2.3,36) is O(c_) . Therefore,

let T =t + = ; ¢ =0I(l). The extended equations are:
o =

<
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(el g—:jl =0 (a)
- a—L - y a—é o
(1-c) i (4e)r +7 k 2F =0 (b) (2.3.38)
2f B
SO AT (c)

The choice of ¢ =1 from (a) and f = A(T, )exp(-fo) from (c) yields in

equation (b)

Al
A—(T1 ) = = (‘ro) = ¢, = constant
o
. S s ( =] -:—
whence A =D exp(cy; T, ) k‘To) o= in 'ro

1
. . 1 1 .
Restricting f(‘ro. T, ) along To =t+— , T, =—k and f(0)=1, we obtain
= € €

f(t) = exp[ -t + 2— 4in (l+gt%= e-t (l+et)2/c

which '~ he exact solution., The asymptotic behavior of the function can be

wrolten o3

2

tt ot tZ/p

1
{t(-t.)m~ expl 2 (e Y357 - el
f(t) ——Pp=
f(t) 2 .4
-~ 2
t} t-0 exp(t- ¢t +3— e2t® - th TS i)

It has thus been demonstrated that in dealing with equations having variable
coefficients, the generality of a nonlinear clock function is mandatory. The

clock itself can be a highly nonlinear function even in simple problems,

2.4 Asymptotology

This chapter concludes with a brief look at one aspect of asymptotic
analysis which has hitherto been known as an art, at best as a quasi-science,
Most people who have worked with asymptotic pheinomena have acquired

implicit knowledge useful with different problems but not general enough to be
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explicitly formulated,

In a highly instructive lecture M. Kruskal enunciated seven principles
governing the philosophy of approach in asymptotic analysis (Ref. 41). This
section (beginning with the title which was first used by him) is a brief review
of these principles motivated by their usefulness in later sections.

Kruskal defines asymptotology as the art of dealing with applied
mathematical systems in limiting cases; alternatively it is the art of
descrioing the behavior of a specified solution (or family of solutions) of a
system in a limiting case, The principles are enumerated below; however,
the one most important for the present work is the sixth--the principle of

maximal balance ( or minimal simplification ).

1. Principle of Simplification,

Asymptotological analysis tends to simplify the system considered,
thus facilitating the generation of approximate solutions. Simplification
occurs for example in perturbation theory; another way this can occur is in
the separation of autonomous subsystems. The system f(x,y) = 0; g(x) =0

has the autonomous subsystem g(x) = 0,
2. Principle of Recursion.

The dominant terms only are retained and solved for and the other
terms are treated as known, Iteration enables one to obtain an asymptotic
representation of the unknown function irrespective of the forms of the terms
appearing. This principle is also useful in deducing general properties through

mathematical induction,
3. Principle of Interpretation.

This advises us to suitably formulate the problem so that the limiting
case is meaningful, Overdeterminism as occurring in matching problems
of the boundary layer type, results in simpli<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>